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Quantum information protocols often rely on tomographic techniques to determine the state of the system.
A popular method of encoding information is on the different paths a photon may take, e.g., parallel waveguides
in integrated optics. However, reconstruction of states encoded onto a large number of paths is often prohibitively
resource intensive and requires complicated experimental setups. Addressing this, we present a simple method
for determining the state of a photon in a superposition of d paths using a rotating one-dimensional optical
Fourier transform. We establish the theory and experimentally demonstrate the technique by measuring a wide
variety of six-dimensional density matrices. The average fidelity of these with the expected state is as high as
0.9852� 0.0008. This performance is comparable to or exceeds established tomographic methods for other types
of systems. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000A27

1. INTRODUCTION

Determining the quantum state of a physical system is a key
task in quantum physics, in particular in quantum metrology,
quantum information, and quantum cryptography. Since the
quantum state ρ determines all the measurable properties of
a system, reconstructing it can aid in building and benchmark-
ing devices in the aforementioned areas. Many techniques exist
for state reconstruction in a variety of types of physical quan-
tum systems, ranging from electron spin to atomic position
[1–4]. Considerable effort has been put toward the develop-
ment of these experimental techniques and improving their
scalability. These techniques have found applications even
outside their original purposes, such as in classical image
processing [5].

Early schemes for quantum information processing with
photons proposed encoding information in a set of d paths that
a photon could be in [6,7]. These paths are sometimes called
rails and usually follow a waveguide or the route a classical
beam would take. The quantum state is the superposition of
paths that the photon is in. If two paths are used, the state
functions as a qubit. Crucially, unlike a commonly used photon
qubit, polarization, higher-dimensional states can be formed by
adding more paths. This allows more information to be en-
coded on a single photon, which is then termed a “qudit” [8].
Higher-dimensional encodings can also simplify the design
of quantum logic circuits [9]. Path encoding is an especially

popular alternative to polarization encoding for on-chip pho-
tonic devices due to the difficulty of fabricating devices that
maintain polarization [10]. A seminal contribution to manipu-
lating path states was a scheme to implement any chosen dis-
crete d × d unitary using an interferometric array of beam
splitters and phase shifters acting on d paths [7,11]. On-chip
implementations of the above-mentioned universal discrete
unitaries are an especially active research direction [12,13]
due to their ability to implement a wide set of quantum infor-
mation algorithms and networks with a single device. In free
space, however, paths are not a commonly used method of state
encoding. This is in part due to the difficulty of reconstructing
the quantum state encoded in a large number of paths.

Despite the importance of the path-state encoding, relatively
little work has been conducted on methods to reconstruct path
states with more than two dimensions. One possibility is to use
a universal unitary to rotate between a complete set of incom-
patible bases, making projective measurements in each. This is
quantum state tomography. If one universal unitary imple-
ments a quantum information algorithm, another would be
required for the tomography, thus doubling the complexity
of the on-chip device. Moreover, in free space, the interferom-
eter required for the universal unitary has never been con-
structed due to its complexity, phase instability, and alignment
issues. Another possibility is to interfere each and every possible
pair of paths. This has the drawback of requiringO�d 2� switch-
able elements such as beam splitters and mirrors. As far as we
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know, neither strategy for d -path quantum state reconstruction
has been implemented above d � 2.

On the other hand, schemes have been devised and imple-
mented to reconstruct the full spatial quantum state of a
photon [14–17]. The d -path state is embedded in this larger
and continuous Hilbert space, that of the photon’s transverse
position. Consequently, one might consider using these tech-
niques to reconstruct the d -path state. However, these methods
are ill suited to reconstructing path-encoded quantum states.
Either they do not provide enough information (e.g., the gra-
dient rather than the value of the phase [16]), or they provide
too much information (e.g., the spatial distribution of each
path). For a fixed measurement time, one would expect these
latter methods to have a higher noise per point than a method
that begins with a priori information that limits the size of the
state space. A method that determines only the parameters
of the d -path density matrix ρ would outperform these full
spatial state reconstructions and may be less experimentally
complicated.

We propose such a method for reconstructing a d -
dimensional path-encoded state and implement it using both
a classical and non-classical source of light. The method relies
on the fact that the discrete set of states is embedded in the
aforementioned continuous Hilbert space, that of the photon’s
transverse position. This opens up the possibility of having
much more measurement outcomes than d . Hence, projections
in many incompatible bases can be performed with one mea-
surement apparatus configuration. This is accomplished by
measuring either position x, with a camera, or momentum
k, by adding a cylindrical lens that performs a one-dimensional
optical Fourier transform (OFT). A conceptual diagram of the
technique is shown in Fig. 1. When the paths are distributed in
both x and y transverse dimensions, the lens rotates to a finite
set of angles in the xy plane. A discrete computational Fourier
transform (DFT) of the measured momentum probability dis-
tribution then allows us to easily reconstruct high-dimensional

path-encoded states. In classical optics, this is equivalent to
measuring the optical coherency matrix [18,19].

2. THEORY

Before introducing our method, we begin by rigorously defin-
ing what is meant by path-state encoding. A single photon is
traveling along z and has transverse position x (for clarity, we
restrict ourselves to one transverse dimension for now). A set of
d states fjψ iixg is defined in this x space. Each has a narrow
position distribution jψ i�x�j2 � jhxjψ iixj2 and is displaced in
x from the other states. The displacement is much larger than
the width of any state distribution, which ensures that they
have minimal overlap, hψ ijψ jix ≈ δij (the Kronecker delta).
Crucially, this means they form an approximate orthonormal
set. In turn, this set is a basis that defines a discrete subspace
embedded in the continuous x Hilbert space. Each basis state
jψ iix represents the photon being in a particular single path i.
Our method additionally requires that the path states have
identical spatial distributions, other than the displacement.
In the momentum basis, a displacement affects only the phase
of the distribution. Hence, this identicality ensures that
jhkx jψ iix j2 � jψ̃�kx�j2 for all i, i.e., the states have identical
probability distributions in momentum kx . Our goal is to re-
construct states in this d -path subspace. Specifically, we will
determine the density matrix ρ �Pd

ij ρijjψ iihψ jjx .
We now describe the basic concept behind our

reconstruction method. Each diagonal element of the density
ρii is the probability for the photon to be in the corresponding
path i. These diagonals are straightforward to determine by di-
rectly projecting onto the path states with d detectors or by
measuring the position x distribution with a camera. The
off-diagonal elements are more challenging. We call these ele-
ments “coherences,” since a given element ρij � jρijj exp�ϕij�
describes the coherence between paths i and j. These two paths
play the same role as the slits in a double-slit interferometer.
There, the coherence between the two slit paths sets the result-
ing visibility (i.e., contrast) of the resulting interference pattern
seen on a distant screen. Effectively, this pattern is the trans-
verse momentum kx probability distribution of the photon just
after the slits. Distinguishability, entanglement with other sys-
tems, amplitude imbalance, and technical or environmental
noise can all decrease the visibility and, hence, the magnitude
jρijj. The phase difference between a photon passing through
slits one and two, equivalent to ϕij, sets the transverse offset of
the interference pattern. In summary, if one can measure the
visibility and phase of the interference between paths i and j,
one can determine ρij for the path state.

The path states can be interfered by looking in transverse
momentum (i.e., Fourier) space. Rather than using a distant
screen, this can be easily accomplished with a lens of focal
length f . The transverse position xf of the photon f distance
after the lens is proportional to the transverse momentum kx
at f distance before the lens. The exact relationship is
xf � f λkx∕2π, where λ is the wavelength of the photon. In
this way, a lens performs an OFT. A general state ρ�x, x 0� �
hxjρjx 0i in the continuous position basis corresponds to
ρ�kx , k 0x� � hkx jρjk 0xi in the momentum basis. A camera at
f after the lens will thus record a signal proportional to the

(a) (b) (c)

Fig. 1. The working principle of path-encoded quantum state
reconstruction. (a) Geometry: the spatial arrangement of paths.
(b), (c) Paths passing through a cylindrical lens to an image sensor.
Along one direction, the paths are interfered by the lens. Along the
other direction, the paths are unaltered. The off-diagonal elements
of the density matrix ρ are found by performing a discrete Fourier
transform of the recorded interference pattern. The cylindrical lens
allows for only chosen sets of paths to be interfered at a time. This
allows the method to accommodate duplicate path spacings in the
geometry.
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momentum probability distribution P�kx� � ρ�kx , kx�. In
the recorded camera distribution (i.e., image), two or more
interfering paths will form an interference pattern composed
of fringes.

With an illustrative two-path example, we now explicitly
show how we extract ρij from the measured momentum
distribution. Our two paths, jψ1ix and jψ2ix , are centered
at x � x1 and x � x2, respectively. Utilizing the Fourier
shift theorem, we get an explicit form for the interference
pattern in terms of the path-state density matrix P�kx� �
jψ̃�kx�j2

Pd
i, j ρij exp�iLxijkx�, where Lxij � jxi − xjj is the pair-

wise distance between the paths i and j in the x direction. Using
the Hermiticity of ρ, this can be simplified to

P�kx� � jψ̃�kx�j2�ρ11 � ρ22 � 2jρ12j cos�Lx12kx � ϕ12��,
(1)

where ϕ12 is the phase of ρ12. This is the interference pattern;
the fringes are due to the oscillating cosine term, and the
envelope is given by Fourier transform of a single path’s
spatial distribution. The visibility of an interference pattern
is defined as the ratio of amplitude of the oscillation to its aver-
age value. Because Trfρg � 1, the visibility can be found to be
2jρijj∕�ρ11 � ρ22� � 2jρijj. As we noted earlier, the visibility is
directly proportional to the magnitude of ρij, and the phase ϕij
of the cosine is the phase of ρij.

We can extract the magnitude and phase information from
the interference pattern in Eq. (1) by using a DFT, performed
with a computer. For clarity, here we present the method in
terms of the continuous Fourier transform Fkx , where the sub-
script denotes the transform is along the kx axis. The Fourier
transform of the measured momentum distribution gives

Fkx fP�kx�g�x̄� � �ρ00 � ρ11�δ�x̄� � ρ12δ�x̄ − Lx12�
� ρ21δ�x̄ � Lx12�: (2)

Because this is the Fourier transform of momentum, the result-
ing function is back in terms of position. However, whereas a
Fourier transform of the amplitude distribution would be in
terms of x, this is transform of the momentum probability
distribution. We distinguish the resulting position variable
by using a bar, i.e., x̄. With this calculated distribution, it be-
comes simple to find ρ12. Namely, the complex value of the
Fourier transform at a position equal to spacing Lx12 is ρ12,
i.e., ρ12 � FkxfP�kx�g�x̄ � Lx12�. In short, a Fourier transform
of the measured interference pattern directly gives the phase
and magnitude of the off-diagonal such as ρij.

While interfering paths using a lens works well for
two paths, extending to higher dimensions by adding more
paths introduces the possibility of overlapping peaks in
Fkx fP�kx�g�x̄�. If more than one pair of paths have the same
spacing, they would contribute to the value of the Fourier
transform at the same x̄. This would make it impossible to dis-
tinguish the contributions from their corresponding density
matrix elements. For instance, they may cancel completely if
completely out of phase. We now discuss this problem and
present our solution.

One way to add more path states would be to simply
distribute them along x. In many cases, however, it may be

convenient to instead distribute them in both transverse direc-
tions x and y. We begin by defining our path states in two di-
mensions. As before, all the path states have identical position
wavefunctions other than a displacement. Specifically, the i-th
path state jψ iixy is centered at position Pi � �xi, yi�. We call
the set of all positions Pi the “geometry.” For simplicity, we
assume that each state has a position wavefunction that is a
two-dimensional Gaussian with equal width σ in both x and
y directions. This ensures that the distribution is symmetric
under rotations in the xy plane and, also, that it is a product
state: jψ iixy � jψ iixjψ iiy. The subscripts x and y distinguish
the two Hilbert spaces. The position wavefunctions are,
thus, ψ i�x, y� � ψ�x − xi�ψ�y − yi�. As before, the paths
must be separated by much more than σ so that they have
minimal overlap, hψ ijψ jix ≈ δij and hψ ijψ jiy ≈ δij. Again,
this means the states form an approximate orthonormal basis
for the embedded discrete Hilbert space. Our goal is to
reconstruct the density matrix of the full d -path quantum state,
ρ �Pd

ij ρijjψ iixyhψ jj.
We must now carefully label and then distinguish every pos-

sible pair of paths, since each is associated with coherence ρij.
The positions of two paths, i and j, are connected by the
line segment Lij with end points �Pi,Pj�. The spacing of
the path pair is given by the length of the line segment,

Lij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Lxij�2 � �Lyij�2

q
, where Lsij � jsi − sjj is the path spac-

ing along the s � x, y axis. Just as in the simple example in the
last section, we obtain coherences ρij from the recorded signal
in momentum space, P�kx , ky�. However, a d -dimensional
context allows for the possibility of multi-path interference.
If each line segment Lij has a unique length and/or orientation,
then each path pair will create a signal at a distinct oscillation
frequency and/or orientation in the interference pattern. In this
case, all coherences ρij can just be read out from the DFT of the
two-dimensional interference pattern in P�kx , ky�. The latter
could be measured by using a spherical lens to perform the
OFT in both x and y directions. The required path geometry
for this, called a Golomb rectangle, is discussed in Appendix A.
However, consider whether in our geometry, there are two
parallel line segments Lij and Li 0j 0 with the same length,
Lij � Li 0j 0 . In this case, the contribution to the DFT from
ρij and ρi 0j 0 cannot be distinguished, since they will appear
at the same peak position �x̄ � Lxij, ȳ � Lyij�.

A cylindrical lens solves this problem as long as Lij and Li 0j 0

are not both segments of the same line. As an example, in
Fig. 2(a), L16, L25, and L34 are parallel and of equal length.
As explained above, using a spherical lens will fail in this case.
Consider instead the action of a cylindrical lens with its OFT
axis parallel to these example line segments Lij. The resulting
probability distribution will be of momentum in the direction
of Lij and position in the perpendicular direction [Fig. 2(b)].
Critically, the line segments, L16, L25, and L34, have distinct
positions along the axis perpendicular to Lij. The cylindrical
lens will leave these positions unchanged. Consequently, the
interference oscillation corresponding to each line segment will
appear at a distinct position and, hence, will be distinguishable.
In our example, we will therefore be able to measure ρ16, ρ25,
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and ρ34 by taking a one-dimensional DFT of the recorded cam-
era image along the cylindrical lens axis. This concept can be
extended to other coherences of ρ by rotating the cylindrical
lens and, hence, OFT axis to all the unique angles θij in our
full set of line segments, where θij � arctan ��yi − yj�∕�xi − xj��.
In Appendix A, we discuss the experimental resource require-
ments of the present tomographic method, as well explicit
algorithms for constructing compatible geometries of path
states. An example of the recorded image for one such angle
is shown in Figs. 2(c) and 2(d). As long as no two Lij and
Li 0j 0 are segments of the same line, this procedure can be used
to determine the density matrix.

For clarity in our mathematical description of this pro-
cedure, instead of rotating the OFT, we rotate the full quantum
state ρ�x, x 0� in position space. Because our path wavefunctions
ψ i�x, y� are rotationally invariant, this task is reduced to find
the rotated path positions P 0

i . If R�θ� is the standard rotation
matrix, then P 0

i � R�θ�Pi. After this rotation, the wavefunc-
tions are ψ 0

i�x, y� � ψ�x − x 0i�ψ�y − y 0i�. In the following dis-
cussion, we drop the primed notation for clarity, assuming
that the paths have been rotated to the appropriate angle θ.
Whatever the angle, the OFT is always along the y axis, and
the x axis is left untransformed. An example of this is shown
in Fig. 2(b) for θ34 � 90°. The camera now records a signal
proportional to probability distribution P�x, ky�.

We consider first the action of the OFT along the y direc-
tion. The result is ρx�ky�, which is still an operator in x space, as
indicated by the subscript x:

ρx�ky� � hkyjρjkyi �
Xd
ij

ρijhkyjψ iiyhψ jjkyijψ iixhψ jj: (3)

Using the Fourier shift theorem, hkyjψ iiy � Ffψ�y − yi�g �
ψ̃�ky� exp�iyiky�, we simplify this to the following expression:

ρx�ky� � jψ̃�ky�j2
Xd
ij

ρije
iLyijky jψ iixhψ jj: (4)

We will drop the envelope jψ̃�ky�j2 for the sake of brevity in the
math below, but in practice, it sets the width and overall height
scale of the peaks in the DFT.

To analyze the sum in Eq. (4), first we separate the terms
where i � j:

ρx�ky� �
Xd
i

ρiijψ iixhψ ij �
Xd
i≠j

ρije
iLyijky jψ iixhψ jj: (5)

We now find the position and momentum probability distri-
bution P�x, ky�. We evaluate it at x � xm, where xm is drawn
from the set of positions Pi of the paths in the rotated geom-
etry. If jψ iix is not centered on xm, then the wavefunction
is nearly zero at x � xm. In other words, hxmjψ iix �
ψ�xm − xi� � ψ�0�δxmxi . Note that even though the values
of xm may not be integers, they are from a discrete set, and
as such, we use the Kronecker delta. With this, the probability
distribution is

P�xm, ky� � hxmjρx�ky�jxmi

� jψ�0�j2
 Xd

i

ρiiδxmxi �
Xd
i≠j

ρije
iLyijkyδxmxiδxmxj

!
:

(6)

For notational convenience, we drop the jψ�0�j2 factor. In
practice, this factor is accounted for when the recorded camera
images are normalized.

As in our two-path example in the last section, we now take
a Fourier transform of P�xm, ky�. We do so along only the ky
direction. In practice, this is implemented by performing a
DFT of the camera image. The result is

FkyfP�xm, ky�g�ȳ�

�
Z

dkyP�xm, ky�eiky ȳ

�
Xd
i
ρiiδxmxiδ�ȳ� �

Xd
i≠j

ρijδ�ȳ − Lyij�δxmxiδxmxj : (7)

There are two cases to consider. Case 1: for a chosen xm, one or
more pairs of paths have xi � xj � xm. If every pair of these has
a unique Lyij, then the peak at FkyfP�xm, ky�g�ȳ � Lyij� has value
ρij. Case 2: for a chosen xm, only a single path in the rotated
frame has xi � xm. In this case, the second term is zero, and
the first sum gives FkyfP�xm, ky�g�ȳ � 0� � ρii, a diagonal
element of the density matrix. Together, these two cases allow
us to determine both the diagonal and off-diagonal elements.

(a) (b)

(c)(d)

Fig. 2. State reconstruction method. (a) Six paths are shown in the
figure and encode the state ρ. The optical Fourier transform (OFT)
axis (blue solid line) rotates to particular angles θij, of which a few are
shown, to interfere each pair of paths at a time (angles are with respect
to a horizontal axis along the bottom-most paths). We assign to each
pair of points a line segment Lij. (b) Corresponding OFT for the eight
angles required to reconstruct this particular density matrix. As only
paths with angle θij between them interfere, the diagonal elements can
be recovered from the remaining paths. The ky axis is always in the
direction of the interference, and the x axis is perpendicular to it
(example shown for θ15). (c) Each pattern is recorded and analyzed
one at a time via discrete Fourier transform (DFT) by taking a one
pixel wide “slice” through the interference pattern. This process is
repeated for every interference pattern present in a given image.
(d) Fourier transform of the interference pattern (for illustrative
purposes, we plot the magnitude). The magnitude ρij is recovered
from the height of the DFT at the position ȳ � Lij. The normalization
is obtained by summing the zero frequency peaks of each interference
pattern present in the θ65 subpanel (in this example) in panel (b). All
panels contain real data.
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Repeating this for the full set of cylindrical lens angles θij, the
full d -path density matrix can be determined. This method
works as long as no two parallel line segmentsLij between paths
with equal spacing are along the same line, which is equivalent
to the condition in case 2. The above theoretical description
constitutes the method to determine ρ that we will later
demonstrate experimentally.

3. EXPERIMENT SETUP

We demonstrate our technique by reconstructing density ma-
trices produced by the setup shown in Fig. 3. Using polarized
light from a diode laser at λ � 808 nm, we use a series of
wave plates and calcite beam displacers, with the crystal axis
cut at 45°, to generate d � 6 paths that contain state ρ.
The beam displacers utilize birefringence to split the ordinary
and extraordinary polarizations of light, producing the paths,
while offering robust phase stability. A 4f system ensures that
all optics are within the Rayleigh length of the beam. The beam

waist is 340 μm. The first beam displacer produces a transverse
shift of δx � 2.7 mm. The crystal axis is orientated such that
horizontally polarized light is shifted horizontally. The second
crystal shifts vertically polarized light vertically by δy �
2.7 mm as well. Last, the third crystal shifts horizontally po-
larized light by δx � 4 mm horizontally. In total, the beam dis-
placers produce eight paths. However, this geometry is
incompatible with the tomography method. For example,
L13 and L57 are both segments of the same line and of equal
length. Therefore, we block two of the eight paths to obtain
a 2 × 3 path geometry that meets all the conditions necessary
for the reconstruction method to work. The resulting six-
dimensional density matrix is a function of the half-wave plate
(HWP) and quarter-wave plate (QWP) angles ϕ, ζ, and Ω,
preceding each crystal, shown in Fig. 3(a). As such, we write
that ρ � ρ�ϕ, ζ,Ω�. Note that in this situation, a 2D OFT
could not be used to reconstruct the state as the geometry due
to repeating spacings of parallel line segments, such as, L12,
L34, and L56 (among others), as shown in Fig. 3(a).

The spatial distributions are imaged onto a camera using a
4f system, where f1 � 1000 mm and f2 � 400 mm, and
background subtracted. The OFT is performed using a cylin-
drical lens (f � 250 mm), placed one focal length before the
camera. The camera has a resolution of 3088 × 2076, and each
pixel is square and has side length γ � 2.40 μm. The lens ro-
tates in an automated mount to each of the right angles θij. The
one-dimensional OFT produces sets of fringes, one for each
pair of paths for which the angle between them is θij. To obtain
the coherence, first we rotate the image back by −θij so as to
orient the interference patterns along y. We then take a single
line of pixels parallel to y and through the center of each in-
terference pattern. We perform a DFT of the recorded intensity
distribution along these pixels. Alternatively, one could average
over a wider section of each interference pattern. However,
averaging could potentially lower the visibility if the fringes
are skewed, which could occur due to spherical aberration
or misalignment of the lens.

The complex amplitude Sij of a peak in the DFT at spacing
ȳ � Lyij is proportional to ρij. We define a scaling factor so that
jρijj � jSij∕Sj, where S �Pd

i Sii is the total recorded inten-
sity. We can obtain S directly from the images used to calculate
ρij, without having to change the apparatus. Specifically, we
note that in Eq. (7), the following holds:

P
xm

Pd
i ρiiδxmxi � 1.

In terms of the recorded signal, we get
P

xm

Pd
i Siiδxmxi � S,

i.e., the sum of the ȳ � 0 peaks for each xm gives the proper
normalization constant S. This is convenient, as no extra data
are required to obtain this scaling.

The complex peaks also determine the phase of coherence
ρij up to an overall convention and a constant offset. The offset
could also be found by determining the location of y � 0 in the
camera image. However, this can be experimentally difficult.
Instead, we input a known quantum state, reconstruct it,
and use it as a reference. A second reference quantum state sets
our convention for which direction along the y axis is positive.
This is equivalent to phase conjugation or, equivalently, which
peak height ρij is proportional to in the DFT, ȳ � Lyij or

(a)

(b)

Fig. 3. Experiment demonstrating the state reconstruction method.
(a) State preparation in blue box: the Rayleigh length of an 808 nm
diode laser is set by a beam expander. A series of displacement crystals
(xtal) and half- and quarter-wave plates (labeled by the angles ϕ, ζ, and
Ω) generate the state ρ. The resulting eight-path geometry is not com-
patible with the tomography method, and so two paths are blocked to
produce a compatible six-dimensional state. A set of HWP and QWP
may be inserted to form a mixed state by rapidly spinningHWPs. The
purity is a function of the wave-plate angle τ. We can also produce
photon pairs via SPDC at 808 nm using a diode at λ � 404 nm
to pump a 15 mm ppKTP crystal. The measured g �2��0� of the source
is 0.1979� 0.0005. (b) Analysis is presented in the purple box: lenses
f1 � 1000 mm and f2 � 400 mm image the six paths onto a camera
(an electron multiplying CCD in the case of down-converted pho-
tons). A rotating cylindrical lens (f � 250 mm) performs the optical
Fourier transform (OFT) along the OFT axis. A one pixel wide slice of
each interference pattern is analyzed with DFT on a computer. Wider
slices can be used and averaged over; however, this may reduce the
visibility if there are imperfections in the interference pattern. This
would include tilting of the dark fringes, or, as can be seen in the fig-
ure, if the intensity in each bright fringe is not evenly distributed. The
coherences are obtained by the heights of the Fourier transform peaks,
normalized by the total intensity. No filters are applied to the raw data.
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ȳ � −Lyij. Any two states whose coherences are different and
non-zero may be used as a reference.

4. RESULTS

The reconstruction method is demonstrated with d � 6 di-
mensional states of the form ρ�ϕ � 22.5°, ζ,Ω � 22.5°� �
ρ�ζ� (i.e., all HWPs are held fixed), whose coherences are a
function of the QWP angle ζ. Figure 4(a) shows the real
and imaginary parts of the 15 off-diagonal elements ρij (not
including the conjugates, ρij). Note that several elements of
ρij will be equal, since the set of states the experimental setup
can produce is constrained. We see good agreement between
the experimental values (dots) and theoretical values (dotted
lines). Figure 4(b) shows the experimental and theoretical
density matrix for ζ � 30° in a side-by-side comparison.

Next, we calculate the state fidelity, F �ρ, σ� �
Trf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp g, which is a measure of how close two density
matrices ρ and σ are. The fidelity is bound between zero and
unity, and F �ρ, σ� � 1 only if ρ � σ. We calculate the fidelity
between the experimentally reconstructed state ρ�ϕ, ζ,Ω� and
the theoretically predicted one ρth. This is done for sets of states
where one of the wave-plate angles ϕ, Ω, or ζ is varied.
Specifically, if an HWP is not being varied, then it is fixed
at 22.5°. If either HWP ϕ or Ω is varied, then we fix ζ � 45°.
Figure 5(a) displays the results. The average fidelity when ϕ is
varied is 0.987� 0.001, 0.9893� 0.0008 when Ω is varied,
and 0.979� 0.001 when ζ is varied. Averaged over all trials,
the fidelity is 0.9852� 0.0008. Given the fidelity is consis-
tently close to one, we conclude that the reconstructed state
faithfully reconstructs the theoretical state.

The density matrix generalizes the concept of the state by
accommodating statistical mixtures of states. A measure of this
is the state purity Trfρ2g. Pure states are those for which
the purity is one. Statistical mixtures decrease the purity to

a minimum of 1∕d , where d is the dimension of the Hilbert
space. We reconstruct ρ and calculate the purity. To mix the
state, we introduce a series of HWP-QWP-HWPs-QWP,
shown in Fig. 4(a). Here, the QWPs are 90° apart. The sub-
script s on HWPs indicates that it is rapidly spinning in a
mount. HWPs spins faster than the collection time of the
camera. This mixes the polarizations, which in turn mixes
the path-state density matrix. The first HWP controls the de-
gree of mixing. The wave-plate angle τ � 0° produces a pure
state, and τ � 22.5° produces a totally mixed polarization state.
The theoretical purity of the resulting path state ρ�τ� is
Trfρ2�τ�g � 1∕9�5� 4 cos2�4τ��. Figure 5(b) shows that the
measured purity agrees strongly with the theory.

To demonstrate that the technique is applicable to
non-classical sources of light, we switch to a source of down-
converted photons. Along with the significantly lowered
average photon count number, single-photon sources have
the added challenge that the coherence length is also substan-
tially reduced. To accommodate for this fact, we introduce glass
slides in the paths of the photons to compensate for the path
length difference imparted by the displacement crystals. We
pump a 15 mm ppKTP crystal with a 404 nm laser to produce
degenerate pairs at 808 nm. The measured autocorrelation g �2�

of the source is 0.1979� 0.0005, which is much less than one,
thereby confirming the light is antibunched and non-classical.
We generate a 4 × 4 path encoded density matrix in a square
geometry with each side length being 2.7 mm. We replace the
QWP labeled by ζ with an HWP, and set all HWP at 22.5°.
The purity of this matrix also depends on τ. The experiment is
otherwise the same, except that the down-converted photons
are imaged onto an electron multiplying CCD (EMCCD).
The EMCCD has a resolution of 512 × 512 with a pixel length
of γ � 16 μm. The calculated purity is shown in Fig. 5(b).
Because the path compensation is not perfect, some ele-
ments have decohered, leading to reduced measured purity.

(a) (b)

Fig. 4. Experimental results. (a) Experimental (dots) and theoretical (curves) coherences ρij of the density matrix ρ. These are produced by varying
the QWP angle ζ in Fig. 3. As the coherences are constrained by the experimental setup, only a few unique values appear in any given matrix. As
such, data points for multiple coherences overlap. Note that error bars, obtained by averaging over multiple pictures, were omitted for clarity but
range from 10−3 to 10−2. (b) Experimentally reconstructed six-dimensional state ρ�ζ � 30°�. Each diagram represents a 6×6 matrix, with theoretical
elements to the right of each experimental element. The fidelity with the nominal input state is 0.9911 (fidelity is one if the states are identical).
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Nevertheless, the results follow the theoretical trend well. In
Fig. 5(c), we plot the density matrix elements for τ � 22.5°
and list the experimental values. For reference, every theoretical
element is either 0.25 or 0. The calculated fidelity is
1.00� 0.03, which confirms that the method works well
for quantum light sources such as single photons.

The reconstruction method satisfies the unity trace and self-
adjoint conditions required of a physically possible density
matrix. However, it will not necessarily satisfy the positive
semi-definite condition. In order to estimate the implications
of this, we alter the measured density matrix to be positive
semi-definite by setting every negative eigenvalue to zero and
renormalizing. Doing so leads to fidelity of 0.9967, which is
within the uncertainty of our raw fidelity. This suggests that
the fidelity would not be significantly changed even if more
sophisticated methods were used to enforce this constraint.
These methods, such as maximum likelihood, could be readily
used with the raw camera data from our experimental method
but can also introduce unwanted bias [20–22] and would
obscure the physics behind the method. Consequently, we
do not describe them further.

5. SUMMARY

The above results show the reconstruction method faithfully
reconstructs several different metrics for a six-dimensional den-
sity matrix. As reconstruction of spatially encoded states has
previously proven to be difficult to do, it has scarcely been done
in the past. For example, the work demonstrated in Ref. [18]
provides the closest analogue. However, the results shown are
lower in dimension, and it is not clear how the technique would
be extended to higher dimensions, making a true comparison
difficult to do. The technique shown in this work presents
a feasible and intuitive method to reconstruct high-dimensional
states. The reconstruction method exploits the fact that discrete
paths are embedded in a larger, continuous space. This allows
us to use Fourier transforms in a continuous space to obtain
data for a discrete density matrix. To avoid having multiple
signals with the same spacing overlap, we utilize a cylindrical
lens to separate the interference patterns spatially along the
orthogonal direction. In this sense, the method uses both

position space and k space simultaneously to reconstruct the
state. We emphasize that the above results reflect a proof of prin-
ciple; the tomography method presented above can, in theory,
accommodate much larger dimensions, given they conform to
the physical constraints (e.g., pixel size, camera size, aberration)
discussed above. We demonstrate the method experimentally by
calculating several metrics for six-dimensional matrices. In
summary, we present an experimentally simple method using
one-dimensional Fourier transforms, one optical and the other
digital, to reconstruct large dimensional density matrices
encoded in the paths of photons.

APPENDIX A: COUNTING THE RESOURCES
REQUIRED FOR THE METHOD

We briefly consider the resources needed for the method. This
allows one to compare it to other quantum-state reconstruction
methods such as tomography. We begin with the required
number of experimental configurations η, which are sometimes
called “measurement settings.” In our method, the only exper-
imental change from one measurement to the next is the OFT-
axis angle. The number η of angles θij required to determine all
the density matrix off-diagonal elements ρij depends on the
specific geometry. In the worse case, each lens angle retrieves
only one element. Thus the maximum number of angles would
be d �d − 1�∕2, the number of independent off-diagonal
complex elements in ρ. More typically, a number of paths will
lie along the same line L. In this case, multiple off-diagonals
can be found with a single lens angle aligned along L.
Consequently, judicious choice of geometry can reduce the
total number of measurement settings significantly.

Consider a one-dimensional geometry, i.e., the path states
are arranged along, say, the y axis. In this case, only one exper-
imental setting is needed to determine all the density matrix
off-diagonals. The lens axis is set parallel to the line of path
states along y. The diagonals can be found with one additional
setting, the lens axis along x. Valid one-dimensional geometries
are given by a Golomb ruler, a set of points with no repeated
spacings. An optimal Golomb ruler is one that minimizes the
maximum spacing for a number of points, d . In the limit of
large d , the Erdös–Turan construction for an asymptotically

(a) (b) (c)

Fig. 5. Experimental results. (a) Fidelity as a function of the wave-plate angles ϕ, ζ, and Ω, shown in Fig. 3. The fidelity is close to unity, meaning
ρ and ρth are nearly equal. Averaged over all points, the fidelity is 0.9852� 0.0008 (dashed line). (b) Purity Tr fρ2g as a function of the HWP angle
τ for a classical source and single-photon source. The single-photon source deviates due to the much shorter coherence length. (c) Reconstructed
density matrix of single photons in four paths. The experimental values are labeled. The corresponding theoretical values are either 0.25 or 0. The
calculated fidelity is 1.00� 0.03.
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optimal set is xi�1 � Lmin�2di � �i2mod d ��, for i �
0, 2,…, d − 1 for any value of d that is an odd prime [23].
Here, Lmin is the minimum possible spacing between paths.
The maximum spacing, Lmax � xd − x1, is then given by
Lmax � Lmin�2d �d − 1� � 1�. Space is a resource for both
path-state encoding and our reconstruction method. The space
available (e.g., the size of the camera screen) constrains the
maximum possible number of path states. Considering a one-
dimensional arrangement, this maximum is dmax � Lmax∕Lmin.
In contrast, a Golomb ruler uses space less efficiently: d �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lmax∕�2Lmin�
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmax∕2

p
for large d . A one-dimensional

geometry is optimal for the number of measurement settings
required to reconstruct ρ (i.e., η � 2), but sub-optimal in
its use of space.

We now examine whether a two-dimensional geometry uses
space more efficiently. Robinson gave a generalization of the
Golomb ruler called the Golomb rectangle [24]. In the area
of astronomical interferometers, these are known as “non-
redundant configurations” [25]. In it, every line segment Lij

is associated with a unique vector, i.e., orientation and length.
Given a non-redundant configuration, a spherical lens is suffi-
cient to reconstruct ρ. As with the one-dimensional geometry,
two measurement settings are sufficient: lens present and lens
absent. Given Lmax and Lmin, explicit computational searches
for optimal Golomb rectangles suggest that maximum number
of path states is d � O�Lmax∕Lmin� [25]. In two dimensions,
the maximum number of closely packed path states is dmax �
O��Lmax∕Lmin�2�. Consequently, the optimum Golomb
rectangles achieve d � O�

ffiffiffiffiffiffiffiffiffi
dmax

p
�. In terms of the total

dimension of the discrete path-state Hilbert space, the benefit
of going from one to two dimensions is limited to the overall
constant factor.

A number of experimental factors will constrain the largest
feasible Lmax. The most obvious is the range of positions D over
which the OFT lens system correctly performs a Fourier trans-
form. This will be set by lens aberrations and/or the lens diam-
eter. Less obvious is the pixel pitch of the camera γ, the distance
between pixel centers. The finest interference pattern produced
by the paths will have a fringe spacing of 2πLmax∕λf at the
camera, where f is the focal length of the OFT lens. In order
to sample the fringes without aliasing, the Nyquist condition
then constrains Lmax < λf ∕πγ. On the other hand, Lmin is
constrained primarily by the width of the paths.

Another resource to consider is the number of measurement
outcomes N per measurement setting. In our case, this is the
number of camera pixels. As described above, the finest pixel
pitch required is γ � λf ∕πLmax. However, the camera pixel-
array widthW must be large enough to record the largest fringe
spacing, which in turn, results from the smallest spacing Lmin.
This sets W � λf ∕πLmin. Together, these requirements deter-
mine the number of pixels along one camera dimension to
satisfy N > W ∕γ � Lmax∕Lmin � dmax. As discussed above,
Lmax < D. In addition, Lmin must be greater than the path-state
position width, Lmin > σ. Taking them together, we have the
requirement N > D∕σ. Or, using the results from the optimal
Golomb ruler above, N > 2d 2 for large d . In typical quantum
state tomography, N � d . These arguments can be straightfor-
wardly extended to two dimensions. This shows that not only is

our method sub-optimal in its use of space, but also in terms of
the number of measurement outcomes per measurement set-
ting. Of course, to its credit, it is, so far, the only experimentally
feasible method for path-state reconstruction, and it requires
only two settings.

Perhaps these resources could be traded for one another by
using a cylindrical lens. The use of a cylindrical lens permits a
denser usage of space, since, as long as they are not collinear,
two or more line segments may have identical vectors. It follows
that the ratio of d to N and dmax will improve. The tradeoff is
that multiple lens angles and, thus, measurement settings η, will
be necessary. As far as we know, the required path-state geom-
etry has not been studied, and so optimal solutions do not exist.
Consequently, we are unable to evaluate this resource tradeoff
in more detail.
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